0=9.54t-4.9t^2

Simple and best practice solution for 0=9.54t-4.9t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=9.54t-4.9t^2 equation:



0=9.54t-4.9t^2
We move all terms to the left:
0-(9.54t-4.9t^2)=0
We add all the numbers together, and all the variables
-(9.54t-4.9t^2)=0
We get rid of parentheses
4.9t^2-9.54t=0
a = 4.9; b = -9.54; c = 0;
Δ = b2-4ac
Δ = -9.542-4·4.9·0
Δ = 91.0116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9.54)-\sqrt{91.0116}}{2*4.9}=\frac{9.54-\sqrt{91.0116}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9.54)+\sqrt{91.0116}}{2*4.9}=\frac{9.54+\sqrt{91.0116}}{9.8} $

See similar equations:

| -67=2(1=5x)-7(1-3x) | | 2x+5x+4=-3x+4 | | 17x+3+12x-9+96+96=360 | | (6x+7)/(3)=(9x+3)/(7) | | 4v+16=12 | | 10-1x/5=8 | | (19x-18)+x=180 | | C(x)=-3(x+10)(x-50) | | .10x+7=28.5 | | 16.63+3.6v=0.5v-18.09 | | 56+x+x=x | | │4v+16│=12 | | –14=–8z+2 | | 30x-4=12x+4 | | 14g=7 | | 23y+1=16y+8 | | 7(2e+3)=3(4e+3) | | -2a+4=-12 | | 16-3x=128 | | 19=d/3-15 | | 56+x+x+x=180 | | 1/5(25x-10)-5x=20 | | 4x^2+6x=6x-36 | | -67=2(1=5x)-7(1-3x0 | | -1/5=y2 | | 6(x−3)+2x=38 | | 180=x^2-2x+x-2 | | 3-1/2=x | | 133x-144=19(7x-6) | | f/8+47=56 | | 1+3x+1=5x+2-2x | | 5(4+x)=+44 |

Equations solver categories